CCHF- Vector ecology

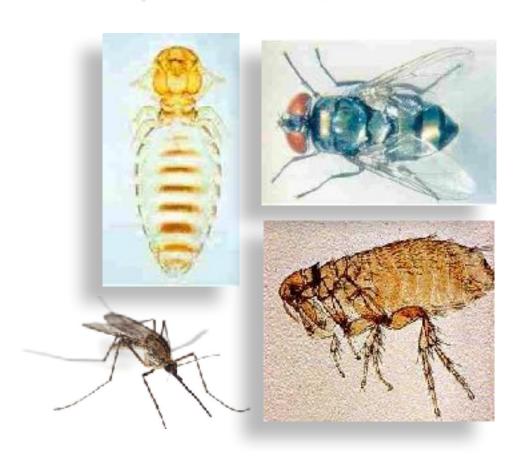
Zati VATANSEVER, DVM, PhD

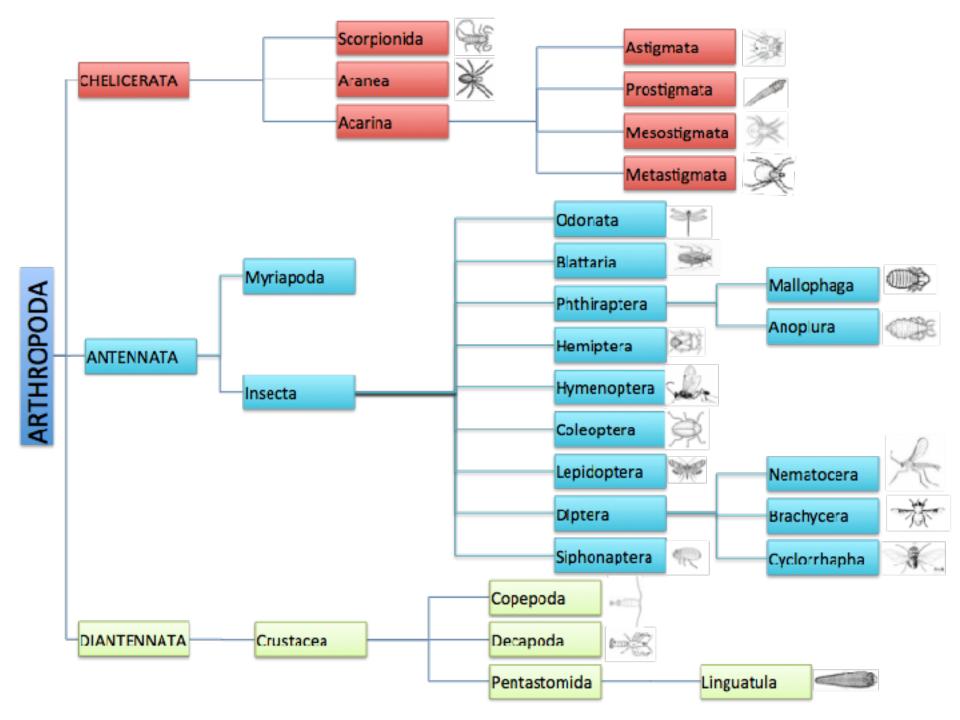
Kafkas University
Faculty of Veterinary Medicine
Departmet of Parasitology
Kars, Turkey

PRAGMATICK Training School, SIVAS, TR, 11-13 June 2025

Ticks are NO Insects

> Arachnida


Cephalothorax



>Insecta

➤ caput, abdomen, thorax

Ticks

- Vectors of more than 200 pathogens
- Tick-pathogen relations = 800

Tick-borne diseases (human perspective)

Ticks as very (most) efficient vectors

- Rikettsia (Ehrlichia, Coxiella, Anapiasma, Rickettsia)
- Bakteria (Borrelia, Francisella, Klebbsiella, Dermatophilus).
- *Viruses (Flaviviridae, Burryaviridae, Recviridae, Rhabdoviridae)
- ✓Protozoa (Theileria, Babesia, Hepatozoon)

- Europe, Asia
 - %400 increase in incidence
- Lyme borreliosis
 - Europe, Russia, USA
 - USA: 25000 cases/year; Germany: 10000 cases/year
- Crimean-Congo Haemorrhagic Fever (CCHF)
 - Turkey, Russia, Balkans, Iran, Afghanistan, Pakistan etc

Tick population dynamics

- Biotic factors
 - Obligatory blood-suckers
 - Need vertebrate host to feed
 - Variable host preference
- Abiotic factors
 - Spend 85-90% of their life off-host
 - Climate and landscape define distribution range of the species

贈問

0-2m

Argasidae and Some Ixodes spp Hyalomma anatolicum Hy. (detritum) scupense

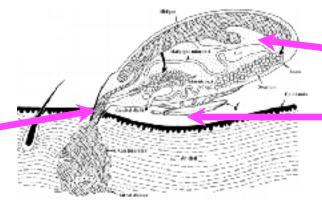
Ambush

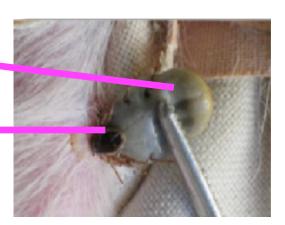
1-10m

Ixodes spp Haemaphysalis spp

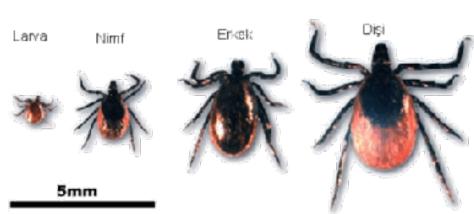
Rhipicehalus spp Dermacentor spp Amblyomma spp

Hyalomma spp


No vertical movement


Hunter

50-500m


Development in Ixodid ticks

- Egg, larvae, nymph, adult
- Parasitising vertebrate animals
 - Obligatory blood feeders
- 2 Moultings
 - 1. from fed larva to flat nymph
 - 2. from fed nymph to flat adult

http://www.oeghmp.st/eucalb/images_enromology.htm

Development in Ixodid ticks

Three types of life-cycle

- Three hosts
 - vast majority of species
 - all stages moult in the environment
- Two hosts
 - some species of Hyalomma, Rhipicephalus, Dermacentor
 - larvae moult to nymphs on the host
 - nymphs moult to adults in the environment
- One host
 - some species of Rhipicephalus, Hyalomma and Dermacentor
 - all moults take place on the host

Ixodidae

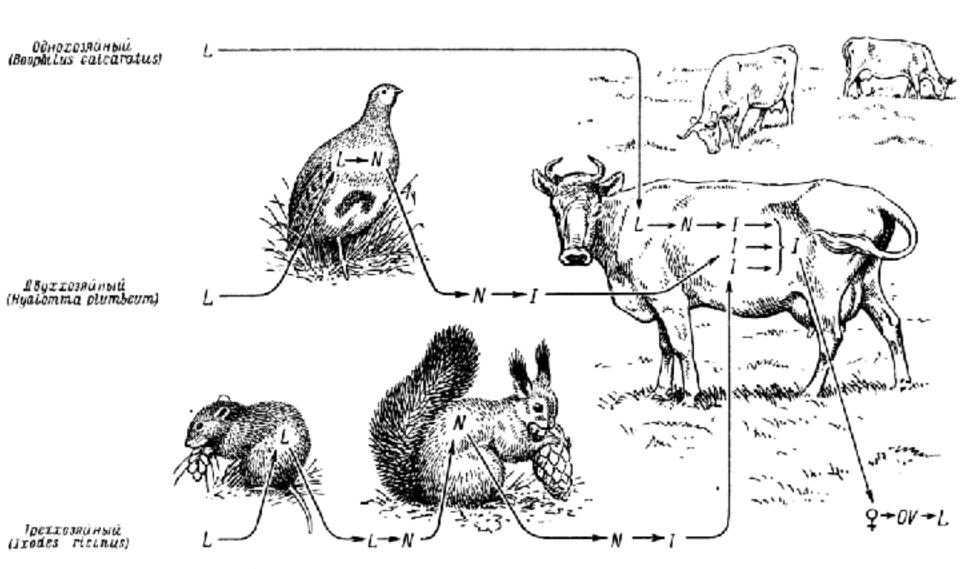
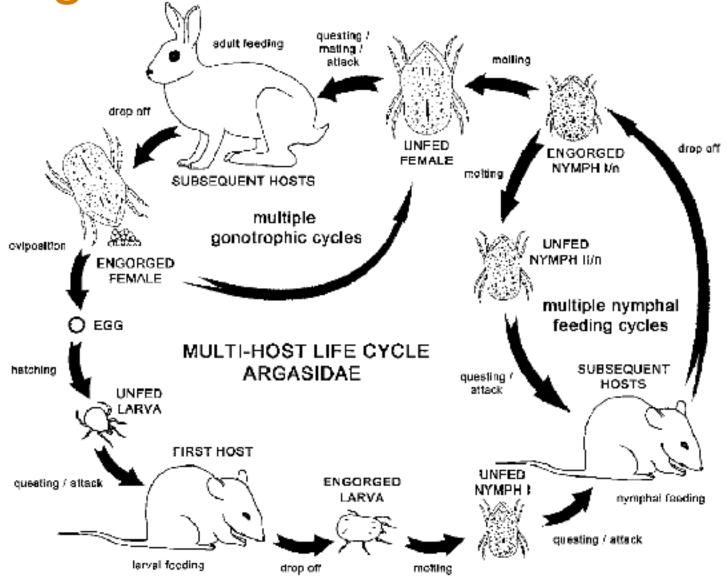
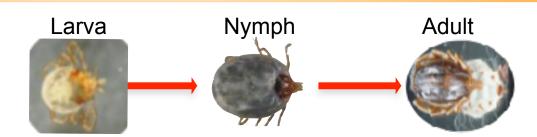



Рис. 27. Схема типов паразитизма у иксодовых клещей. (Сердюкова, 1955б). І-варослие влеща. От абда, L личиска. N вимфа.

Argasidae

- Life cycle is highly variable
- Same developmental stages, but usually with repeated feeding
- Always more than one nymphal instar:
 - Otobius: 2 nymphal instars
 - Ornithodoros lahorensis: 3 nymphal instars
 - Other Ornithodoros spp.: 3-8 nymphal instars
- Number of nymphal instars depends on:
 - Species
 - Degree of engorgement of previous instars/stages
 - Temperature

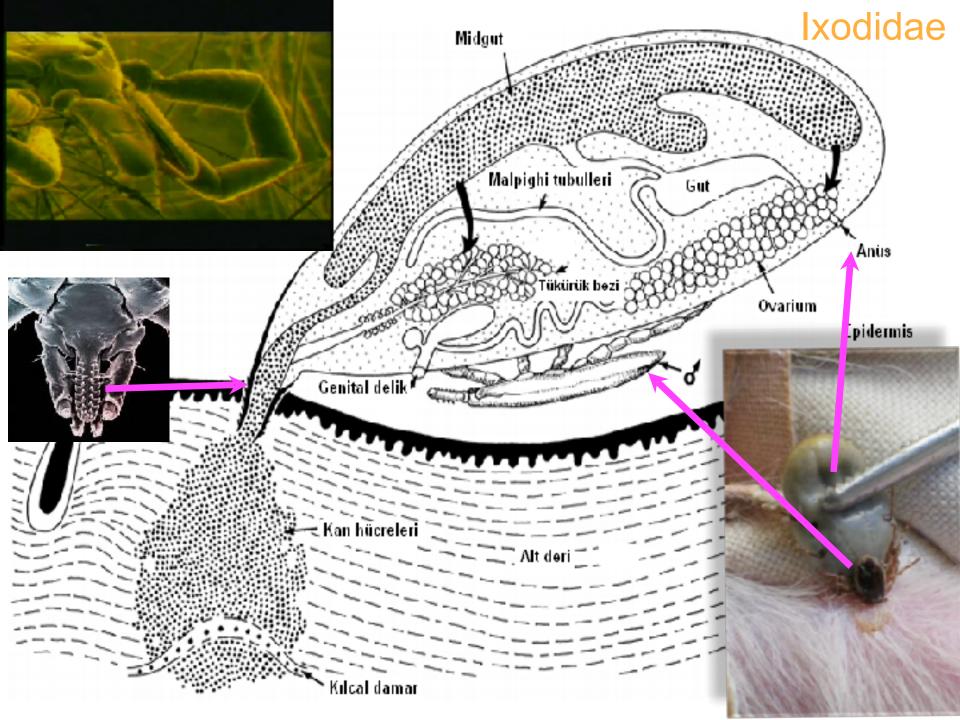

Argasidae

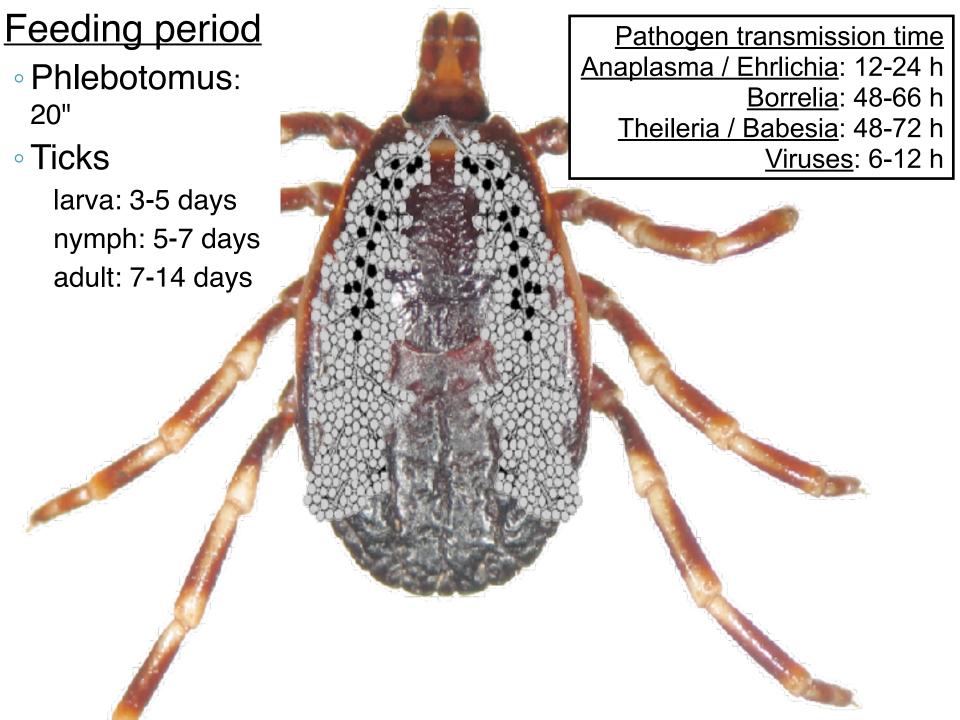
Pathogen maintenance and transmission

-Trans-stadial (horizontal)

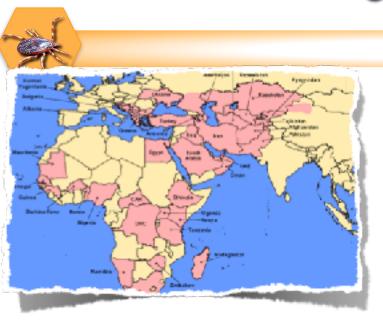
-Trans-ovarial (vertical)

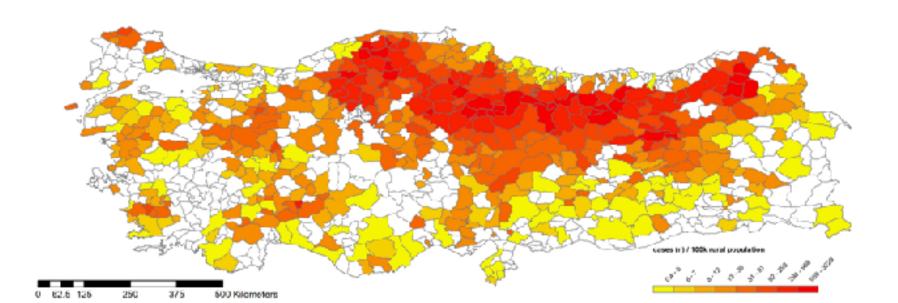
-Nonviremic transmission by co-feeding





-Venereal





Crimean-Congo Haemorrhagic fever

- Most widespread tick-borne viral disease of humans
 - More than 30 countries are affected
- Recent outbreaks in Eurasia
 - Southern Federal districts of RF (since 1999)
 - Balkans (Kosovo, Albania, Bulgaria, Greece)
 - Turkey (since 2002)
 - Iran, Afghanistan, Pakistan,
 - o SPAIN ...

CCHF in Animals

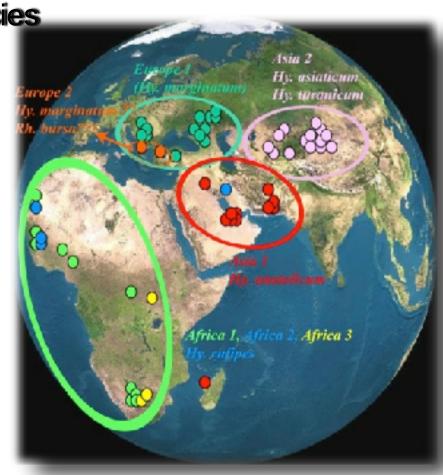
- No clinical symptoms in animals (Not known in Vet. Med.)
 - Viraemia lasts for 7-14 days
- Virus isolation and serology
 - Hare, hedgehog, cattle, goat, sheep, ostriches, rooks

CCHF is in the OIE list of notifiable animal diseases since 2006

CCHF: transmission to humans

- Tick associated
 - Tick bite
 - Crushing of infected ticks
- Contact with viraemic animal's tissues & fluids
- Nosocomial
 - Patient contact
 - Tissue & body fluids contact
- Laboratory

CCHFv vectors

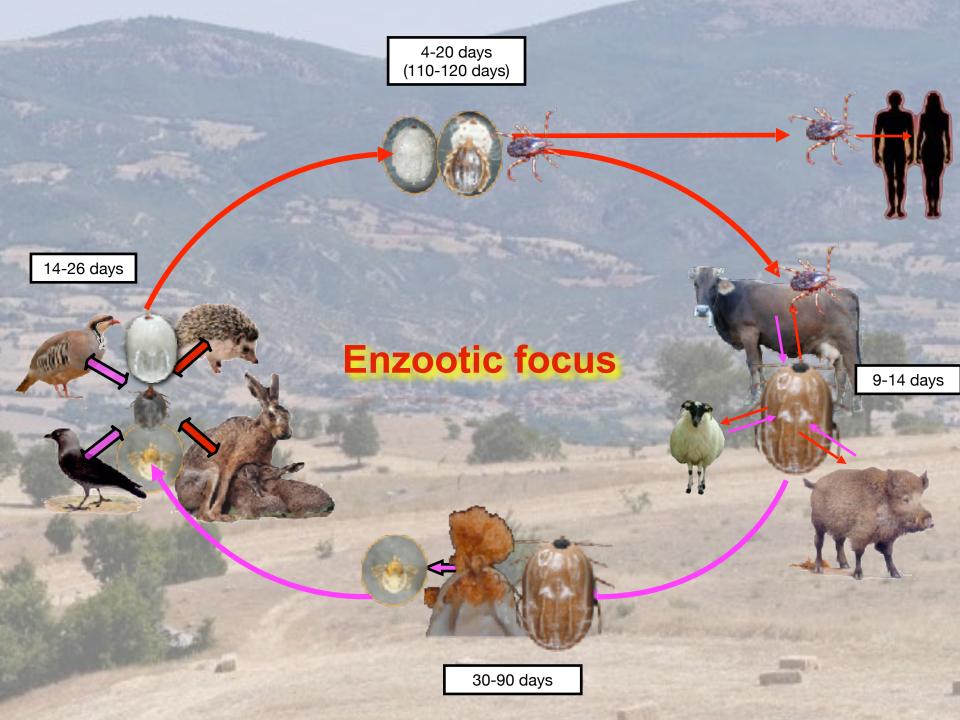


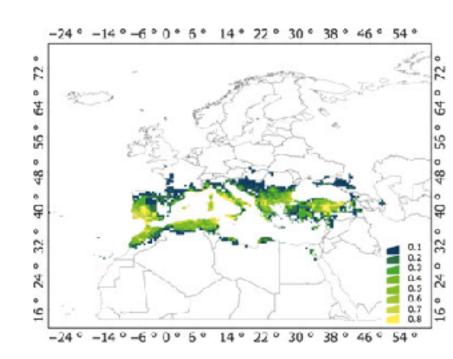
- Proven competent vectors
 - -Hyalomma marginatum
 - -Hy. rufipes
 - -Hy. turanicum
 - -Hy. asiaticum
 - -Hy. truncatum
 - -H. impeltatum
 - -<u>Hy. anatolicum</u>
 - –Dermacentor marginatus
 - -Rhipicephalus rossicus
 - -Rh. evertsi
 - -Amblyomma variegatum

The tick: Hyalomma marginatum

-Two-host exophilic tick,

-1 year (from egg to egg) life cycle


- Adults feed on
 Artiodactyla (cattle, horses, sheep, goats, wild boars) (peak in May-June)
- Immatures feed on small wildlife; hares, hedgehogs and ground-feeding birds (Corvidae, Phasianidae, Passerinae) (Peak in July-August)



H. marginatum

- Adapted to mediterranean/steppe climate
 - hot and dry summers, cold winters
 - High humidity adversely affects embryonal development

J. Med. Entomol. 37(6): 807-814 (2000)

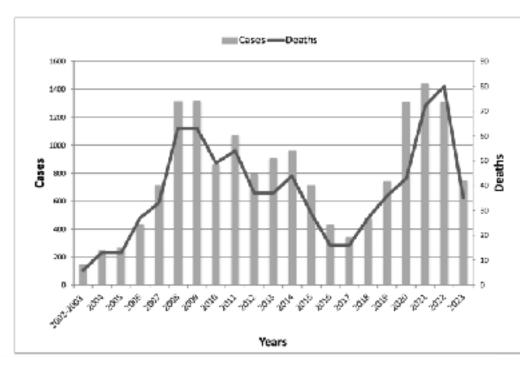
- Does not exceed parallel 47°N
 - "Populations north of the parallel 47°N are subjected to low developmental rates because of low temperatures"
 - below 3000 °C of accumulated temperatures

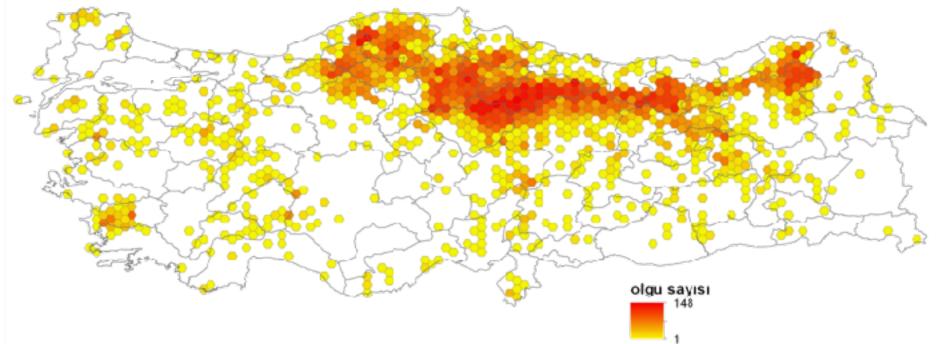
H. marginatum

- Hunter tick
- Agresively attacks hosts
 - Very fast and continuous horizontal movement (50-500m)
 - No vertical movement

- Active in summer months
 - –Activity starts in spring (temp > 10°C)
 - -Optimal activity at 22-27°C and 75-100% RH
 - -Hides under vegetation or in cracks when ground temperature reaches 45°C
- Overwinters as unfed adult
 - in cattle pastures, fallow land and bush (not in livestock shelters)

CCHF Epidemics (Russia, Balkans, Turkey)




- -Ecological changes (regeneration)
- -Increase in wild animals and ticks (Hyalomma)

CCHF in Turkey

Largest epidemic in the World •2002-2023

- 3700 villages in 300 districts
- 16578 cases
- 793 deaths (%4.8)

The biotic characteristics of CCHF foci

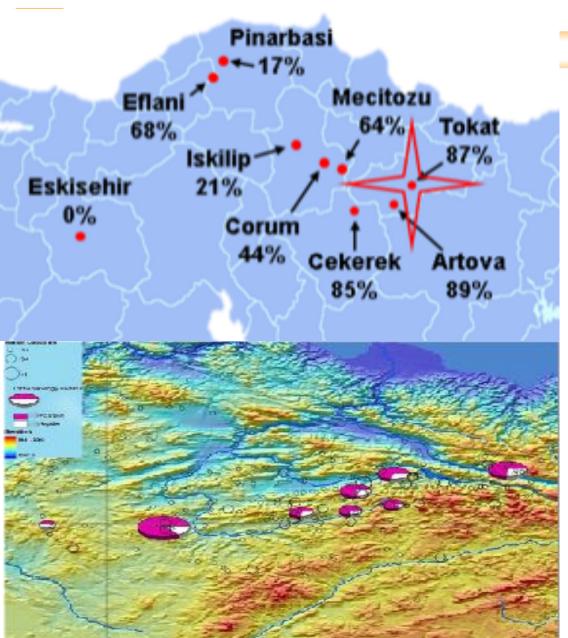
Livestock

Cattle

- The main host for adult ticks
 - 36 female ticks per cattle/season
 - 250 000 larvae per cattle/season
- Have role in transovarial transmission of the virus

Sheep

- Remarkable decrease in population (50-70%) Russia & Turkey
- Might caused increase in hare* and Hyalomma population



Seroprevalance in cattle

İlçe	sampled	Prevalance%
2011		
Eskisehir	7	0
Eflani	118	68
Pinarbasi	42	17
Iskilip	29	21
Corum	71	44
Mecitozu	28	63
Cekerek	60	85
Artova	36	89
Tokat	69	87
Erzurum	37	0
Total 2011	497	57
2005		
Boğazkale	3	33
Almus	6	33
Artova	8	63
Reşadiye	35	74
Tokat	110	76
Zile	5	80
Sorgun	15	87
Çekerek	43	88
Yeşilyurt	3	100
Yıldızeli	6	100
Total 2005	234	78

CCHFv prevalence in ticks from livestock*

	Animal (feeding ticks)			
Species	MLE%	nTicks	nPools	nPosPools (qPCR)
D.marginatus	33.33	3	3	1
Hae.punctata	4.12	24	17	1
Hae.sulcata	0.00	1	1	0
Hy.asiaticum	0.00	161	92	0
Hy.excavatum	6.09	17	11	1
Hy.marginatum	6.21	1942	898	116
Hy.rufipes	N/A (100)	2	1	1
lx.ricunus	0.00	1	1	0
Rh.bursa	2.49	40	35	1
Rh.turanicus	0.00	42	32	0
Total	5.81	2233	1091	121

^{*}Positivity in ticks collected from animals is NOT an indicator of vectorial capacity!

Transovarial transmission

- Problems in maintaining oviposition in lab
- 41400 larvae from 22 engorged females from 11 cows
 - 246 larval pools (50-250 larvae/pool)
- 2 female carcases from 2 cows tested positive
- 6 out of 7 larval pools of those ticks were also positive

	Female	qPCR	nLarvae	npools	nPos
	Hy. marginatum1	N	3400	17	0
	Hy. marginatum2	N	3300	17	0
cow1	Hy. marginatum3	N	3500	18	0
	Hy. marginatum4	N	1700	9	0
	Hy. marginatum5	Р	700	4	4
cow2	Hy. marginatum6	Р	600	3	2

The biotic characteristics of CCHF foci

Wild boars

- Host for adult ticks
- May play role in viral circulation

Hares & hedgehogs

- Main host for immature ticks
- Play role in viral circulation
 - 17.5% of detached* ticks from hares tested CCHFv (+)

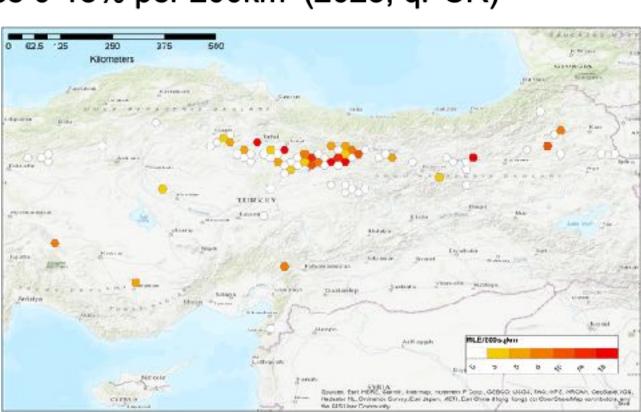
Partridges/rooks

- Hosts for immature ticks
- May play role in non-viraemic transmission
 - 10.8% of detached* ticks from partridges teste
 CCHFv (+)

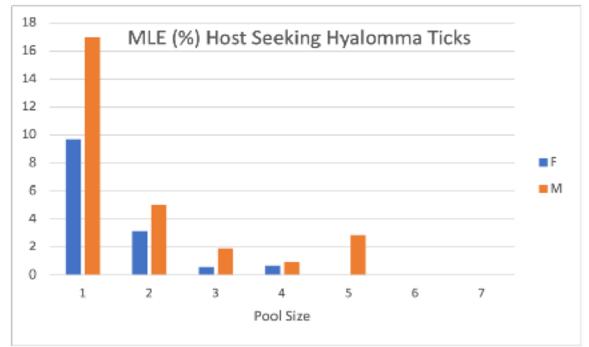
^{*} collected as engorged nymphs, molted to adults in the lab and tested with PCR

Hares

- 5 out of 59 (8.47%) rtPCR positive
- Heavy tick (Larvae/Nymphs) infestation (94.72%)
 - Dermacentor spp. (L/N) 913
 - Hyalomma spp. (L/N) 4394
 - Hyalomma/Dermacentor cofeeding (4/1)



Host seeking ticks


- Viral RNA
 - -16.43% (2008, rtPCR)
 - -5.77% (2010, AgELISA)
 - -MLE prevalence 0-18% per 200km² (2023, qPCR)

- qRT-PCR
 - Different viral loads in ticks
 - 4.88×10¹/ml
 - 2.63×10³/ml
 - 4.5×10³/ml,
 - 3.72×10⁴/ml
 - 8.64×10⁴/ml

Host seeking ticks (qPCR)

	Ground (host seeking ticks)			
Species	MLE%	nTicks	nPools	nPosPools
Hae.punctata	0.00	7	6	0
Hae.sulcata	0.00	1	1	0
Hy.asiaticum	0.00	1	1	0
Hy.excavatum	0.00	19	10	0
Hy.marginatum**	4.49	1446	690	64
Rh.bursa*	25.00	4	4	1
Rh.turanicus*	8.19	38	30	3
Total	5.38	1516	742	68

Socio-economic factors

Russia (USSR) & Balkans

Post WWII

- Return to the abandoned lands (Crimea)
- Transformation of natural areas into agricultural lands (Rostov & Bulgaria)
- Prevention of floods (Astrakhan)

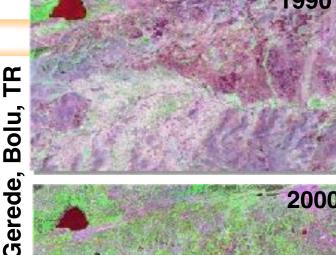
Post Gorbachov...

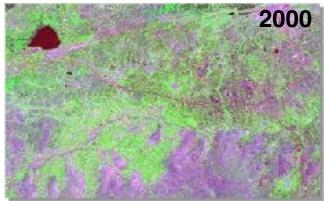
- Political conflicts (Bosnia, Kosovo)
- Collapse of Soviet system
 - Radical changes in agriculture

Socio-economic factors, Turkey

- Undulated and fragmented landscape
- Crop rotation
 - Wheat/Vetch, Wheat/fallow

Ecological regenaration

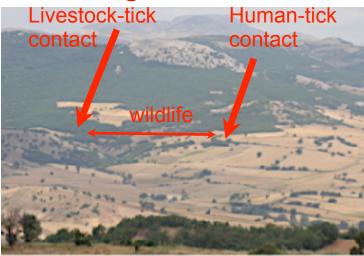

- Increase in bush type habitat (Increase in wildlife population)
 - Forestration, ban of sheep grazing
 - Abondon of the fields due to migration


Primitive agriculture

Fragmented habitat/Crop rotation

Forestration, Ban of sheep/goat grazing

Crop rotation


CCHF risk

Cases are associated with

Hyalomma presence and habitat fragmentation

Safety first...

Thank you